缺点: 首先,触点和簧片是相当小而精致的,所以它们难以承受高压或大电流。 电流过大时,簧片会因过热失去弹性。即开关容量小,接点易产生抖动以及接点接触电阻大。干簧管有电压和电流额定值。 虽然功率W=电压I*电流U,同样的功率可能由不同的电压和电流组合得到。切记不要超过额定电流。例如,10V*1A = 10W,同时1V*10A=10W,在第2种情况下,电流会太大。如果您要使用大电流,由继电器线圈与磁簧开关组成的继电器电路是更合适的选择。故障排查工序多。故障干簧管需要用仪器(如AT值测试器、绝缘耐压测试器、内阻测试器等)检测。不适合误差范围小的产品设计:AT值范围大,从成本角度考虑不能保证批量产品的AT值都相同,并且配套磁石也不尽相同。由于磁簧开关是相当脆弱的,如果引出线焊接到较厚器件上,很容易破损玻璃和密封件。 如果你需要弯曲引出线,需要恰当选择引出线的弯曲点。我们的干簧管采用先进的材料和工艺,具有的创新性,满足客户对高性能产品的需求。常开常闭干簧管焊接
干簧管(Reed Switch)也称舌簧管开关或磁簧管开关,它是一种磁感开关元件,由美国贝尔电话实验室沃尔特·埃尔伍德(Walter B Ellwood)于1936年发明[1]。干簧管内磁簧上的触点材料是铑、钌或铱,并工作在真空或充满氮、氦等气体的玻璃管内,引线的材料是容易退火的铁、钴、镍等材料。在磁场的作用下磁簧及磁簧引线被磁化使触点闭合,磁场离去后触点断开。磁场的磁力线方向是从N极到S极,在磁力线上任意取两点也是N极到S极,当磁力线通过引线及磁簧形成闭合磁路,触点两端便形成这样的N、S极而相互吸引,即被磁化而闭合[2]。干簧管是否被磁化如图1所示。常开常闭干簧管电压干簧管的低接触电阻,能够减少信号衰减,提高信号传输的质量。
方式1:见图1,磁铁沿干簧管长度方向移动,磁铁的N(或S)极向着前进方向,此时可以看到在磁铁从接近一端移至另一端吸合过程中间有两次释放,即触点的两侧有两死点。方式2:见图2,磁铁移动方向同上,但移动时磁铁的N(或S)极面向干簧管,此时可看到在吸合的全过程中有一次释放,即触点位置是一死点。方式3:见图3,磁铁运动方向与干簧管长度方向垂直,其交叉点(或立交点)正是触点位置(一般是干簧管的中间),磁铁的S/N 极分别在运动方向的两侧,此时近则吸合,远则释放,中间无死点。
选用注意事项: 在一般的工业生产场所,通常都选用涡流式接近开关和电容式接近开关。因为这两种接近开关对环境的要求条件较低。当被测对象是导电物体或可以固定在一块金属物上的物体时,一般都选用涡流式接近开关,因为它的响应频率高、抗环境干扰性能好、应用范围广、价格较低。若所测对象是非金属(或金属)、液位高度、粉状物高度、塑料、等。则应选用电容式接近开关。这种开关的响应频率低,但稳定性好。安装时应考虑环境因素的影响。若被物为导磁材料或者为了区别和它在一同运动的物体而把磁钢埋在被测物体内时,应选用霍尔接近开关,它的价格低。干簧管具有良好的抗震和抗振动能力,适用于各种恶劣环境下的使用。
后对系统进行了实现,明确了测量相机系统、计算机主机、显示器以及稳压电源等硬件组成及参数,设计了系统软件流程,描述了逻辑处理过程与软件效果,展示了测试结果。本文设计开发的干簧管参数调试系统通过三个光学相机对干簧管实时高清成像,操作员可直观的观察调节情况,采用高清工业相机进行高精度测量。系统软件可以显示出干簧管宽面、窄面以及整体图像,其中窄面可测量簧片重合度、间隙、簧片厚度参数,宽面可测量簧片宽度、倾斜度等参数,整体显示相机可辅助观察簧片是否居于玻璃管中间。采用按钮开关控制稳压电源的开关,便于加热装置对干簧管加热。干簧管的低功耗特性,能够节省能源,降低您的运营成本。门磁干簧管液位传感器
我们的干簧管具有高精度和高可靠性,满足客户对精密测量和控制的需求。常开常闭干簧管焊接
当靶点在左侧向前移动时得出与右侧对称的结果,可得靶点接近干簧管时成空间分布,是以纵轴为圆心的同心圆,如图3中A向视图所示,用“⊗”表示磁体移动方向。将永磁体转90°,即磁体与干簧管垂直,接近方向仍为与干簧管平行,这时靶点位置如图4中所示,并得出其导通—关断特性。在图3和图4中,永磁体距离干簧管较近时出现干簧管的关断,这是因为此时磁力线方向与干簧管垂直使其不能被磁化。测量纸不动,改变玻璃板位置转90°,可测得磁体以垂直移动方向(向左)接近干簧管的导通情况,如图5、图6所示,这时对靶点的定义有所不同。当永磁体移动碰到干簧管及引线时可将永磁体抬起继续移动。经整理可看出:b与c关于纵轴对称。常开常闭干簧管焊接